Stage 0-1	$\begin{gathered} \text { Stage } 2 \& 3 \\ * * \text { After } 1 \text { year at } \\ \text { school** } \end{gathered}$	Stage 4 **After 2 years at school**	$\begin{gathered} \hline \text { Stage E5 } \\ * * \text { End of Year } 3 * * \end{gathered}$	$\begin{gathered} \text { Stage } 5 \\ * * \text { End of Year } 4 * * \end{gathered}$	$\begin{gathered} \hline \text { Stage E6 } \\ * * \text { End of Year } 5 * * \end{gathered}$	$\begin{gathered} \text { Stage } 6 \\ * * \text { End of Year } 6 * * \end{gathered}$	$\begin{gathered} \text { Stage E7 } \\ * * \text { End of Year } 7 * * \end{gathered}$	$\begin{gathered} \text { Stage } 7 \\ * * \text { End of Year } 8 * * \end{gathered}$
Numbers from 0 to 10	Numbers from 10 to 20	2 / 3-digit numbers	3 / 4-digit numbers	4/5-digit numbers	5,6 and 7-digit numbers	ALL whole numbers Decimal numbers (1 dp)	Decimal numbers (2 dp)	Decimal numbers (to ANY dp)
I can recognise numbers from 0 to 10. (read / say / write / count it out) I can order numbers from 0 to 10. (count forwards / backwards, ordering e.g. 1, 2, 3 or 10, 9, 8, number before / after, smallest to largest, largest to smallest etc.) I can recognise patterns to 5. (tens frames, fingers, tally, dot patterns)	I can recognise numbers from 10 to 20. (read / say / write / partition / count it out) I can order numbers from 10 to 20. (count forwards / backwards, ordering, before / after, smallest to largest etc.) I can skip count forwards and backwards to and from 20 in different amounts. (multiples of $2 / 5$) I can recognise patterns to 10. (tens frames, fingers, tally)	I can recognise 2 / 3digit numbers. (read/ say / write / partition) I can order 2-digit numbers. (count forwards / backwards, ordering, before / after, smallest to largest, more than > / less than < symbols and statements etc.) I can skip count forwards and backwards to and from 100 in different amounts (multiples of 1/2 / 5 / 10 starting from any even number, any number ending with 0 or 5 and any number)	I can recognise 3/4digit numbers. (read / say / writ, partition) I can order 3-digit numbers. (count forwards / backwards, ordering, before / after, smallest to largest, more than > / less than < symbols and statements etc.) I can skip count forwards and backwards to and from 1000 in different amounts from any starting number (1 /10 / 100 and crossing 10s/100s boundaries)	I can recognise 4 / 5digit numbers. (read / say / write, partition) I can order 4-digit numbers. (count forwards / backwards, ordering, before / after, smallest to largest, more than > / less than < symbols and statements etc.) I can skip count forwards and backwards to and from 10,000 in different amounts from any starting number. (1/ 10/100/1000)	I can recognise all numbers to 1, 000,000 (read / say / write, partition) I can order all numbers to 1, 000,000 (count forwards / backwards, ordering, before / after, smallest to largest, more than > / less than < symbols and statements etc.) I can skip count forwards and backwards to and from 100,000 in different amounts from any starting number. (1/ 10/100/1000/10,000)	I can recognise ALL whole numbers. (read/ say / write, partition) I can recognise numbers to 1 decimal place. (read / say/write) I can order numbers to 1 decimal place. (count forwards / backwards, order, put on a number line) I can skip count forwards and backwards in different amounts from any starting number. (0.1 / 1)	I can recognise numbers to 2 decimal places. (read / say / write / partition) I can order number to 2 decimal places. (count forwards / backwards, order, put on a number line) I can skip count forwards and backwards in different amounts. $(0.01 / 0.1 / 1)$	I can recognise numbers to 2 or more decimal places. (read / say / write, partition) I can order numbers to 2 or more decimal places. (count forwards / backwards, order, put on a number line) I can skip count forwards and backwards in different amounts. (0.001, $0.01 / 0.1 / 1$)

Progression with Place Value

Stage 0-1	$\begin{gathered} \text { Stage } 2 \& 3 \\ \text { **After } 1 \text { year at } \\ \text { school** } \end{gathered}$	$\begin{gathered} \text { Stage } 4 \\ { }^{* *} \text { After } 2 \text { years at } \end{gathered}$ school**	$\begin{gathered} \text { Stage E5 } \\ * * \text { End of Year } 3 * * \end{gathered}$	$\begin{gathered} \text { Stage } 5 \\ * * \text { End of Year } 4 * * \end{gathered}$	$\begin{gathered} \text { Stage E6 } \\ * * \text { End of Year } 5 * * \end{gathered}$	$\begin{gathered} \text { Stage } 6 \\ * * \text { End of Year } 6 * * \end{gathered}$	$\begin{gathered} \text { Stage E7 } \\ { }_{* *} \text { End of Year } 7 * * \end{gathered}$	$\begin{gathered} \text { Stage } 7 \\ { }^{* *} \text { End of Year } 8 * * \end{gathered}$
Numbers from 0 to 10	Numbers from 10 to 20	2-digit numbers	3 -digit numbers	4/5-digit numbers	5,6 and 7-digit numbers	ALL whole numbers Decimal numbers ($1 / 2 \mathrm{dp}$)	Decimal numbers (2 dp)	Decimal numbers (to ANY dp)
		I can recognise tens in a two-digit number. e.g. 76 has 7 tens	I can recognise tens or hundreds in a 3-digit number. e.g. 763 has 76 tens e.g. 763 has 7 hundreds I can round 2 and 3digit numbers (to 10 / 100)	I can recognise tens or hundreds in a 4 / 5 -digit number. e.g. 4763 has 476 tens e.g. 4763 has 47 hundreds e.g. 4763 has 4 thousands I can say that 800 is 8 centuries and that 4000 is 40 centuries or hundreds. I can round 3 and 4digit numbers (to 10 / 100/1000)	I can recognise tens, hundreds and thousands in all numbers to 1,000,000. e.g. 64,341 has 6,434 tens / 643 hundreds I 64 thousands I can use my understanding of multiplying and dividing by 10,100 and 1000 to work out how many $10 \mathrm{~s}, 100 \mathrm{~s}$ and 1000 s are in numbers. I can round all numbers up to 10,000 (to 10 / 100 / 1000/10,000)	I can recognise tens, hundreds, thousands etc in ALL whole numbers. I can recognise tenths in numbers to 1 decimal place e.g. 5.1 has 51 tenths I am beginning to recognise how many hundredths are in decimal numbers with up to 2 decimal places. e.g. 2.84 is 284 hundredths I can round ALL whole numbers up to 1,000,000. (nearest 1,10,100,100) I can round decimals up to 2dp. (nearest whole number)	I can recognise tenths and hundredths in numbers to 2 decimal places. e.g. 5.12 has 51 tenths e.g. 5.12 has 512 hundredths I can round decimals. (nearest whole or tenth)	I can recognise tenths and hundredths in whole numbers and ANY decimal places. e.g. 5.12 has 51 tenths e.g. 5.12 has 512 hundredths I can round ANY decimals. (nearest whole or tenth or hundredth)

Progression with Basic Facts

Stage 0-1	$\begin{gathered} \text { Stage } 2 \& 3 \\ * * \text { After } 1 \text { year at } \end{gathered}$ school**	Stage 4 **After 2 years at school**	Stage E5 ** End of Year 3 **	Stage 5 ** End of Year 4 **	Stage E6 ** End of Year 5 **	Stage 6 ** End of Year 6 **	Stage E7 ** End of Year 7 **	Stage 7 ** End of Year 8 **
Numbers from 0 to 10	Numbers to 10	2-digit numbers	2 and 3-digit numbers	2 and 3-digit numbers Multiplication and division facts $(2,5,10)$	Multiplication and division facts $(3,4,6)$	Multiplication \& division facts up to 10×10 $(7,8,9)$	Multiplication and division facts Fractions / decimals / percentages	Fractions / decimals / percentages
	I can instantly recall addition and subtraction facts to 5 . $\text { e.g. } 3+2=5$ $\text { e.g. } 5-2=3$ I can instantly recall number bonds to 10. e.g. $7+3$ and $2+8$ I can instantly recall doubles and halves to 10. e.g. $5+5$ e.g. half of 10 I can identify teen numbers (read / say / write)	I can identify teen and ty numbers (read / say / write, partition) I can instantly recall addition and subtraction facts to 10. e.g. $6+3=9$ e.g. $7-3=4$ I can instantly recall number bonds to 100. (with multiples of 10) e.g. $80+$? $=100$ I can instantly recall doubles and halves to 20. $\text { e.g. } 10+10=20$ e.g. half of 20	I can instantly recall addition facts to 20. e.g. $16+2=18$ I can instantly recall number bonds of multiples of 10 up to 100 e.g. number bonds to 20 , 30 etc $15+?=20$ I can instantly recall number bonds to 1000 (with multiples of 100) e.g. $800+$? $=1000$ I can instantly recall doubles and halves to 100. e.g. $30+30$ e.g. half of 70 e.g. link to $\times 2$ and $\div 2$ I can understand what is meant by the word multiple. I can give multiples of numbers up to 100 $(2,5,10)$ e.g. 42 and 64 are multiples of 2 and 85 and 100 are multiples of 5	I can instantly recall all addition and subtraction facts to 20. $\text { e.g. } 16-5=11$ I can generate fact families. (e.g. $4+5=$ 9 so $5+4=9,9-5=$ 4, 9-4=5) I can instantly recall number bonds to 100 and 1000 using any number. e.g. 83 $+?=100$ I can instantly recall the multiplication and division facts for 2 I can instantly recall the multiplication and division facts for 5 I can instantly recall the multiplication and division facts for 10	I can instantly recall the multiplication and division facts for 3 I can instantly recall the multiplication and division facts for 4 I can instantly recall the multiplication and division facts for 6	I can instantly recall the multiplication and division facts for 8 I can instantly recall the multiplication and division facts for 9 I can instantly recall the multiplication and division facts for 7 I am beginning to understand what is meant by 'factors'.	I can recall fraction to decimal to percentage conversions. e.g. $1 / 2=0.5=50 \%$ e.g. $1 / 4=0.25=25 \%$ e.g. $1 / 10=0.1=10 \%$ I can recall divisibility rules e.g. for $2,5,10$ I can identify multiples (of ALL numbers (up to 10×10) e.g. Multiples of 6 up to 48 I can identify factors (to 100)	```I can convert fractions to decimals and percentages (and vice versa) (including percentages beyond 1 whole) I can convert improper fractions to decimals and percentages (and vice versa) I can simplify fractions using knowledge of multiplication, factors and multiples. (e.g. 12/20 \(=3 / 5\)) I can recall and apply common divisibility rules (for \(3,4,9\)) I can give the least common multiple (LCM) of numbers (e.g. LCM of 6 and 9 is 18) I can give the highest common factor (HCF) of 2 two-digit numbers (e.g. HCF of 12 and 28 is 4)```

Progression with Fractions

Stage 0-1	$\begin{gathered} \text { Stage } 2 \text { \& } 3 \\ * * \text { After 1 year at } \\ \text { school** } \end{gathered}$	$\begin{gathered} \text { Stage } 4 \\ { }^{* *} \text { After } 2 \text { years at } \end{gathered}$ school**	$\begin{gathered} \text { Stage E5 } \\ \text { ** } \text { End of Year } 3 * * \end{gathered}$	$\begin{gathered} \text { Stage } 5 \\ * * \text { End of Year } 4 * * \end{gathered}$	$\begin{gathered} \text { Stage E6 } \\ * * \text { End of Year } 5 * * \end{gathered}$	$\begin{gathered} \text { Stage } 6 \\ * * \text { End of Year } 6 * * \end{gathered}$	$\begin{gathered} \text { Stage E7 } \\ * * \text { End of Year } 7 * * \end{gathered}$	$\begin{gathered} \text { Stage } 7 \\ { }^{* *} \text { End of Year } 8 * * \end{gathered}$
	Halves and quarters	Halves, thirds, quarters, fifths	tenths	Recognising \& ordering proper fractions	Recognising proper/ improper ordering fractions	Recognising \& ordering ALL fractions ALL Improper fractions.	Equivalent fractions Order ALL fractions	Comparing ALL common fractions
	I can recognise (read, write and represent) halves and quarters to 20 (shapes and sets)	I can recognise (read, write and represent) fractions: halves / quarters / thirds fifths.	I can recognise (read, write and represent) tenths. I can recognise when shapes are divided into tenths. I can identify the numerator and denominator and explain what they represent. (e.g. $3 / 4$ means the whole is cut into 4 and 3 are shaded)	I can recognise (read, write and represent) ALL fractions with a numerator of 1. (e.g. $1 / 20,1 / 16$) I can recognise (read, write and represent) ALL proper fractions with numerators bigger than 1. (e.g. $3 / 4$) I can put fractions with the same denominator in order from the smallest to the largest or vice versa. I can put fractions with 1 as the numerator in order from the smallest to the largest or vice versa. (e.g. $1 / 2,1 / 4$) I can recognise simple equivalent fractions. (e.g. $1 / 2=$ $2 / 42 / 4=1 / 2$) I can read, write and represent improper fractions. (e.g. 5/4 7/5)	I can recognise (read, write and represent) ALL proper fractions (e.g. one quarter, $1 / 4$, six eighths 6/8) I can recognise (read, write and represent) some simple improper fractions. (e.g. 3/2, $4 / 3,5 / 4,6 / 5$) I can turn improper fractions into mixed numbers by using multiplication. (e.g. 16/3 = $51 / 3$ using $5 \times 3=15$) So, 5 whole ones and 1/3 I can fold shapes to recognise equivalent fractions. (e.g. $9 / 12=3 / 4$) I can put fractions with the same numerator in order from the smallest to the largest or vice versa. (e.g. $1 / 2$, 1/5, 1/7)	I can recognise (read, write and represent) ALL proper, improper and mixed fractions. (e.g. 2 2/6= 2 whole pizzas and $2 / 6$ of a third pizza.) I can convert improper and mixed fractions. (e.g. $1 \frac{1}{4}=$ one whole and one quarter, or five quarters) I can put fractions with the same numerator or same denominator in order from the smallest to the largest or vice versa. (e.g. $1 / 2,1 / 5,1 / 7$)	I can put proper fractions with the same numerator and different denominator in order, e.g. $1 / 2,1 / 4$ and $1 / 10$ from smallest to the largest or vice versa. I can identify the smallest / largest proper fraction in a set when they have different numerators AND denominators e.g. 1/3, $3 / 8$, $4 / 10,1 / 3$ is the smallest) I can order fractions with unlike denominators by comparing fraction sizes on a fraction wall, e.g. 2/6>1/4 I can put proper fractions with different numerators and denominators in order, e.g. $1 / 2,4 / 5,2 / 3,3 / 8$ from smallest to largest and vice versa. I can turn improper fractions into mixed numbers by using division, e.g. 47/7 to 6 5/7 (using $47 \div 7=6 r 5$) I can turn more complex mixed numbers into improper fractions by, e.g $65 / 6$ to 41 / 6 or 41 sixths I can identify equivalent fractions for halves, quarters and tenths with denominators of 10, 100 and 1000. E.g. $1 / 4=25 / 100$,	I can compare any proper fractions (halves / thirds / quarters / fifths / eighths/ tenths) and explain which is larger / smaller using number conversions as well as pictures. (e.g. $2 / 5=40 / 100$ and $3 / 4=75 / 100$ so $3 / 4$ is bigger) I can compare improper fractions and explain which is larger / smaller using number conversions as well as pictures. I can use my knowledge of common factors and multiples to support this. I can use the greater than and less than symbols to compare both proper and improper fractions. I can put all common proper and improper fractions in order and explain which is larger / smaller using number conversions as well as pictures. (e.g. 3/2, 7/4, 19/10, 9/3) I can find common denominators and simplify fractions to help support ordering fractions. I can identify equivalent fractions for thirds, fifths, with denominators of 10,100 and 1000. E.g. $1 / 4=$ $25 / 100,2 / 3=66 / 100$

Progression with ADD / SUB Strategies

Stage 0-1	$\begin{gathered} \text { Stage } 2 \& 3 \\ \text { **After } 1 \text { year at } \\ \text { school** } \end{gathered}$	Stage 4 **After 2 years at school**	$\begin{gathered} \text { Stage E5 } \\ * * \text { End of Year } 3 * * \end{gathered}$	$\begin{gathered} \text { Stage 5 } \\ * * \text { End of Year } 4 * * \end{gathered}$	$\begin{gathered} \text { Stage E6 } \\ * * \text { End of Year } 5 * * \end{gathered}$	$\begin{gathered} \text { Stage } 6 \\ * * \text { End of Year } 6 * * \end{gathered}$	$\begin{gathered} \text { Stage E7 } \\ * * \text { End of Year } 7 * * \end{gathered}$	$\begin{gathered} \text { Stage } 7 \\ * * \text { End of Year } 8 * * \end{gathered}$
1 to 1 counting	1 to 1 counting	Count on / back	Basic strategies: doubling \& making tens	PVP strategy \& making tens	PVP strategy (3-digit numbers) Reverse (3 digit)	PVP strategy / algorithm Round and compensate Reverse	DECIMALS PVP strategy / algorithm Round and compensate Reverse Integers (basic)	DECIMALS (all) PVP strategy / algorithm Round and compensate Reverse Integers (complex)
I can count sets of materials up to 10 I can make sets of materials up to 10	I can count all the objects to find the answer. I can count all the objects in my head to find the answer. I can add two groups together by counting all the objects in my head up to 20, e.g. $5+4=9$ and $12+4=16$ I can take away from a group up to 20 in my head and count what is left, e.g. $9-3=$ 6 and 20-2 $=18$ I can add groups of 10 to find the answer, e.g. $30+40=70$ because I know 3+4=7 I can take away groups of 10 in my head to find the answer, e.g. 60-40=20 because I know 6-4 = 2	I can count forwards from the largest number in my head to find the answer. e.g. $9+4=1$ put 9 in my head then count on 4 more...10, 11, 12, 13 I can count backwards from the largest number in my head to find the answer. e.g. 12-4 = I put 12 in my head then count back 4... 11, 10, 9, 8 I can solve addition and subtraction problems with groups of tens and ones, using place value materials e.g. $30+20=50,63-30=$ 33, $65-32=33$) I can check my answers.	I can use known basic facts to find the answer. e.g. $8+7=1$ know $10+7=17$ so $8+7=15$ I can use doubles to solve addition problems. e.g. $8+7=1$ know $8+8=16$ so $8+7=15$. Using $x 2$ and $\div 2$ will help support this. I can make tens (tidy numbers) to solve addition problems. e.g. $8+7=1$ know $8+2=10$ and $10+5=15$ I can use compatible numbers to solve problems up to 20 (by not counting). (e.g. $8+2+7-9=8 \quad 2+7$ $=9$ so remove them to leave 8) I can solve problems adding or taking a single digit up to 100 by making connections with how the family of facts (e.g. 45-7 = 1 know 45-5 = 40 and $40-2=38$) I can check my answers.	I can use place value (partitioning) to: ...add 2-digit numbers. e.g. $44+25=1$ know $40+20=$ 60 and $4+5=9$ so the answer is 69 ...subtract 2-digit numbers. e.g. $79-34=1$ know $79-30=$ 49 and $49-4=45{ }^{* *}$ Only the second number is partitioned I can use a near double to solve a problem with numbers which are close to 25, 50 and 100 (e.g. $24+26$ $=50$ by $25+25$ and $52+$ $51=103$ By $50+50=100$ and $100+3=103$ I can use compatible numbers to solve problems up to 100 . I can work back through ten and use tidy numbers to find the answer. e.g. 45-7=1 know 45-5 = 40 and 40-2 = 38	I can use my knowledge of rounding to estimate answers to addition and subtraction problems involving 3-digit numbers. I can use place value (partitioning) to: ... add 3-digit numbers. e.g. $463+215=1$ know $400+$ $200=600$ and $60+10=70$ and $3+5=8$ so answer is 678 - start with ones or hundreds. ...subtract 3-digit numbers. e.g. 463-212 = I know 463$200=263$ and $263-10=253$ and 253-2 = 251) **only second number is partitioned** I can reverse a subtraction problem and solve it using known strategies. e.g. 137$125=\mid$ can change it to $125+$? = 137 I can use a number line to solve + and - problems with up to 3 digits. I can use an equal addition strategy to make a tidy number to solve subtraction problems over a 100. (e.g. $138-18$ as $140-20=120$) I can use doubles and near doubles of numbers in 100's I can check my answers using inverse operations (e.g. $137-125=22$ can be checked with $125+22=137$)	I can use my knowledge of rounding to estimate answers to addition and subtraction problems involving whole numbers. I can use place value partitioning \& algorithms to: ...add ANY numbers e.g. $7331+258=1$ know to add the ones, tens, hundreds and thousands. The answer is 7589 ...subtract ANY numbers. e.g. $8935-6123=1$ know to subtract the ones, tens, hundreds and thousands. The answer is 2812 **only second number is partitioned** I can use rounding and compensating to: ...add numbers. e.g. $135+999 \gg 135+1000$, then - 1 ..subtract numbers. e.g. $834-398$ >> $834-400$, then +2 I can use a mixture of strategies to solve + and problems like reversibility, equal additions, doubles / near doubles, making tens and using a number line. e.g. 2013-1985 = I know that $1985+15=2000$ and 2000 $+13=2013$ so the answer is 28	I can use my knowledge of rounding to estimate answers to addition and subtraction problems involving whole numbers and decimals. I can use place value (partitioning) \& algorithms to: ... add decimals (2dp) .. to subtract decimals (2dp) I can use rounding and compensating to: ..add decimals (2dp) .to subtract decimals (2dp). I can reverse a subtraction problem and solve it using known strategies (2dp). Using a number line may support this. E.g. 6.03-5.8 as $5.8+$ \qquad $=6.03$ I can use a mixture of strategies to solve addition and subtraction problems involving decimals to 2dp (see S6). I can use a number line to solve simple integer problems. E.g. 3-7=-4 I can use integers (positive and negative numbers) to solve problems with numbers between +10 and $-10 \text { e.g. }-1++4=+30 R+1$ $+-4=-3$	I can use my knowledge of rounding to estimate answers to addition and subtraction problems involving whole numbers and numbers with a mixed number of decimal places. I can use place value (partitioning) \& algorithms to: .. add decimals (mix of 1, 2 and 3dp) .. to subtract decimals (mix of 1, 2 and 3dp) I can use rounding and compensating to: ..add decimals (mix of 1, 2 and 3dp) .to subtract decimals (mix of 1, 2 and 3dp) I can reverse a sub. problem and solve it using known strategies (mix of 1,2 and 3dp). using a number line may support this. E.g. $1.5-$ $0.085=0.085+$ \qquad $=1.5$. I can use a mixture of strategies to solve + and problems involving decimals with up to 3 dp and a mix e.g. place value, reversing, compatible numbers, tidy numbers, equal additions, doubles / near doubles. I can solve complex integer problems. e.g. $-64++58=-$ 6 OR +72--28 = +100

Progression with MULT / DIV Strategies

Stage 0-1	$\begin{gathered} \text { Stage } 2 \text { \& } 3 \\ * * \text { After } 1 \text { year at } \\ \text { school** } \end{gathered}$	Stage 4 **After 2 years at school**	$\begin{gathered} \text { Stage E5 } \\ * * \text { End of Year } 3 * * \end{gathered}$	$\begin{gathered} \text { Stage } 5 \\ * * \text { End of Year } 4 * * \end{gathered}$	$\begin{gathered} \text { Stage E6 } \\ * * \text { End of Year } 5 * * \end{gathered}$	Stage 6 ** End of Year 6**	$\begin{gathered} \text { Stage E7 } \\ * * \text { End of Year } 7 * * \end{gathered}$	$\begin{gathered} \text { Stage } 7 \\ * * \text { End of Year } 8 * * \end{gathered}$
		Skip counting (2, 5, 10)	X 2,10 and adding	$\begin{gathered} \text { X 2,5,10 } \\ \text { (and adding) } \end{gathered}$	Some 10×10 facts (and adding) Reverse PVP (TO x O)	ALL 10×10 facts Double \& halve PVP (TO x O) Round and compensate	$\begin{aligned} & \text { PVP (TO x TO) } \\ & \text { PVP (HTO x O) } \end{aligned}$ Round and compensate Reverse Divide with remainders	ALL strategies (3-digit no's) Decimals
		I can skip count in twos to find the answer to word problems. (e.g. 5 chickens lay 2 eggs each. How many eggs did they lay altogether?2, 4, 6, 8, 10) I can skip count in TENS to find the answer to word problems. (e.g. 10 chickens lay 6 eggs each. How many eggs did they lay altogether?... 10, 20,30,40,50,60) I can skip count in fives to find the answer to word problems. (e.g. 5 chickens lay 5 eggs each. How many eggs did they lay altogether?5, 10, 15, 20, 25) We are learning to solve division problems by using materials to share equally in sets of 1, 2 and 5 (e.g. I can share into sets of 1 , I can share into sets of 2, I can share into sets of 5)	I can use a combination of multiplication and repeated addition to find the answer. (e.g. 3 packets of biscuits with 5 in each packet. I know $2 \times 5=$ 10 and $10+5=15$) I can draw an array to show a multiplication fact, e.g. 4×3 and show how it is different to 3 $x 4$ but is the same value	I can use 2,5 and 10 multiplication facts to find the answer. (e.g. 3 packets of biscuits with 5 in each packet. I know $3 \times 5=15$) I can use a combination of multiplication and repeated addition to find the answer. (e.g. $8 \times 12=1$ know $8 \times 10=$ 80 and $80+8=88$ and $88+8$ = 96) I can generate division facts from known multiplication facts. I can use doubling and halving. (e.g. I can use my x 10 tables to work out my x tables, like $2 \times 10=20$ so 4×5 =20)	I can use known multiplication and division facts (up to 10×10) to find the answer. $\text { (e.g. } 8 \times 6=1 \text { know that } 8 \times 5$ $=40 \text { and } 40+8=48)$ I can reverse a division problem and solve it using known multiplication facts (up to 10×10). (e.g. $36 \div 6=1$ can change it to $6 x^{\prime}=36$) I can use place value (partitioning) and known multiplication facts (up to 10 $x 10$) to solve multiplication problems. (e.g. $14 \times 7=1$ know that $10 \times$ $7=70$ and $4 \times 7=28$ then I add those together to get 98) I can solve division problems which have remainders. (e.g. $43 \div 5=8$ r 3 because $5 \times 8=$ 40 with 3 left over or $39 \div 4=9$ $3 / 4$ or 9.75)	I can use all multiplication and division facts to 10×10 to find answers. (e.g. $45 \div 9=9 \times ?=$) I can use doubling and halving to find the answer to multiplication and division problems. (e.g. $15 \times 6=1$ know that 30×3 $=90$) I can use a trebling and thirding strategy to solve multiplication problems. (e.g. $3 \times 18=$ as $9 \times 6=54$) I can use place value (partitioning) to multiply a 2 digit number by a 1 -digit number. (e.g. $23 \times 7=1$ know that $20 \times 7=140$ and $3 \times 7=$ 21 then I add those together to get 161) I can use rounding and compensating to multiply a 2-digit number by a 1-digit number. $\text { (e.g. } 19 \times 8=1 \text { know that } 20 \times 8$ $=160 \text { and } 160-8=152)$	I can use place value (partitioning) to multiply a 2 digit number by a 2 -digit number. E.g. 23×11 I can use place value (partitioning) to multiply a 3 digit number by a 1 -digit number. E.g. 236×7 I can use rounding and compensating to multiply a 2 -digit number by a 1 -digit number. E.g. 29×7 I can use rounding and compensating to multiply a 2-digit number by a 2 -digit number. E.g. 19×16 I can use rounding and compensating to multiply a 3 -digit number by a 1 -digit number. E.g. 199×6 I can use doubling / halving, trebling/thirding and a standard written form to x and - I can use a mixture of strategies to solve division problems, including those involving remainders. E.g. 87 $\begin{aligned} & \div 5=17 r 2 \text { OR } 81 \div 3= \\ & 3 \times \overline{=}=81,3 \times 20=60, \text { then } \\ & 3 \times 7=21 . \end{aligned}$	I can use a mixture of strategies to solve 3 -digit number problems; PVP, reverse, round and compensate, double and halve, standard written method e.g. $114 \div 6=6 \times 19=114$. Because... $6 \times 20=120$ then (1×6) I can use a mixture of strategies to solve decimal equations; PVP, reverse, round and compensate, double and halve, standard written method e.g. 1.5×12 (could do... 3×6 OR $1 \times 12+0.5 \times 12 . .$.

Progression with FRACTIONS \& PROPORTIONS Strategies

Stage 0-1	$\begin{gathered} \text { Stage } 2 \& 3 \\ \text { **After } 1 \text { year at } \\ \text { school** } \end{gathered}$	$\begin{gathered} \text { Stage } 4 \\ { }^{* *} \text { After } 2 \text { years at } \end{gathered}$ school**	$\begin{gathered} \text { Stage E5 } \\ * * \text { End of Year } 3 * * \end{gathered}$	$\begin{gathered} \text { Stage } 5 \\ * * \text { End of Year } 4 * * \end{gathered}$	$\begin{gathered} \text { Stage E6 } \\ { }^{* *} \text { End of Year } 5 * * \end{gathered}$	$\begin{gathered} \text { Stage } 6 \\ * * \text { End of Year } 6 * * \end{gathered}$	$\begin{gathered} \text { Stage E7 } \\ * * \text { End of Year } 7 * * \end{gathered}$	$\begin{gathered} \text { Stage } 7 \\ { }^{* *} \text { End of Year } 8 * * \end{gathered}$
		$1 / 2$ or $1 / 4$ with materials $1 / 2$ or $1 / 4$ using diagrams / imaging	$1 / 2$ or $1 / 4$ using halving or addition facts	$1 / 2,14,1 / 5$ using addition $1 / 2,1 / 4,1 / 5$ using mult / div Ratios	Fractions using known mult / div facts Ratios	```Fractions using ALL mult / div facts (up to \(10 \times 10\)) 2 step fractions equations Ratios (up to \(10 \times 10\))```	Add / sub fractions Complex fraction equations Ratios - simple equivalence	Add / sub fractions Improper fractions 2 step ratio Q
		I can find half of sets by sharing materials equally (e.g. $1 / 2$ of 18) I can find quarter of sets by sharing materials equally (e.g. $1 / 4$ of 20) I can find half of sets by sharing equally in my head or drawing a picture. (e.g. $1 / 2$ of 18) I can find quarter of sets by sharing equally in my head or drawing a picture. (e.g. $1 / 4$ of 16) I can find fractions of different shapes by folding into equal parts (e.g. 1/8eighth, $1 / 3-$ third, $1 / 6-$ sixth) I can use materials to make a fraction of a set into a whole set. (e.g. 3 is a third of a set so the whole set is $3+3+3$ and there is 9 in the whole set)	I can find quarter of a whole number using halving facts OR simple addition $(3+3+3+3)$ (e.g. $1 / 4$ of $12=1$ know $1 / 2$ of 12 is 6 and $1 / 2$ of 6 is 3) I can find a fraction of a number by halving or by using equal addition. (1/2 of $10=5$ because $5+5=10$ and $1 / 3$ of 12 is 4 because 4 $+4+4=12$ also $1 / 4$ of $28=7$ because $1 / 2$ of 28 is 14 and $1 / 2$ of 14 is 7	I can find the fraction of a whole number using repeated addition. (e.g. $1 / 4$ of $16=4$ because I know that $4+4+4+4=16$) I can find the fraction of a whole number using known multiplication and division facts. (e.g. $1 / 3$ of $15=5$ because I know that 3 $x 5=15$) I can solve ratio problems using known addition facts. (e.g. A chicken lays 3 eggs every 2 days. How many eggs would it lay in 6 days? I know that $3+3+3$ =9)	I can use known division facts to find 1 part of a set. (e.g. $1 / 5$ of $40=8$ because 1 know that $40 \div 5=8$) I can use known division facts to find fractions of sets when the numerator is more than 1 . (e.g. $3 / 4$ of $24=18$ because $24 \div 4=6$ and $6 \times 3=18$) I can solve ratio problems using known multiplication facts. (e.g. 2: $5=6$:__ \quad know $2 \times 3=$ 6 and $5 \times 3=15$ so the answer is 6:15) I can solve simple 1: 2 ratio problems by repeated copying.	I can find fractions of sets when the numerator is more than 1. (e.g. $5 / 7$ of 56) I can solve 2 step fraction equations. E.g. If I spent $\$ 6$ and have $2 / 3$ of my money left, how much did I start with? I can solve ratio problems by using all multiplication and division facts to 10 x 10. (e.g. 32 carrots in 4 bags, so XXX in 12 bags. 4: 32 is equal to $12: 96$)	I can add fractions with the same / similar denominator. e.g. $1 / 4+3 / 8=5 / 8$ I can subtract fractions with the same / similar denominator. e.g. $7-8-3-8=$ $4 / 8$ or $1 / 2$ I can solve fraction equations that have a missing value E.g. $3 / 4$ of $=32$ I can find simple equivalent ratios. E.g. 3:5 as ___: 40	I can add fractions with different denominator by simplifying. e.g. $3 / 8+2 / 6=$ $9 / 24+8 / 24=17 / 24$ I can subtract fractions with different denominator by simplifying. I can solve fraction problems involving improper fractions (e.g. 6 cars filled up $3 / 4$ of their tank with fuel = how many full tanks is this equivalent to?) $6 \times 3 / 4=18 / 4=41 / 2$ I can use efficient strategies to find complex equivalent ratios. E.g. 6: 14 is equal to \qquad :21

